

AO4724 30V N-Channel MOSFET CREET IM

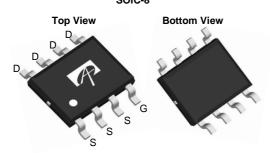
General Description

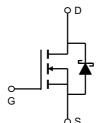
SRFET[™] The AO4724 uses advanced trench technology with a monolithically integrated Schottky diode to provide excellent R_{DS(ON)},and low gate charge. This device is suitable for use as a low side FET in SMPS, load switching and general purpose applications.

Product Summary

 $V_{DS}(V) = 30V$

 $I_D = 10.5A$ $(V_{GS} = 10V)$


 $R_{DS(ON)}$ < 17.5m Ω (V_{GS} = 10V)


 $R_{DS(ON)} < 29 \ m\Omega \ (V_{GS} = 4.5 V)$

100% UIS Tested 100% Rg Tested

SRFETTM
Soft Recovery MOSFET:
Integrated Schottky Diode

Absolute Maximum Ratings T_A=25℃ unless otherwise noted

			Maximum		
Parameter		Symbol	10 Sec	Steady State	Units
Drain-Source Voltage		V_{DS}	30		V
Gate-Source Voltage		V_{GS}	±20		V
Continuous Drain	T _A =25℃		10.5	7.7	
Current AF	T _A =70℃	I_D	8.5	6.2	Α
Pulsed Drain Current ^B		I_{DM}	80		
	T _A =25℃	P _D	3.1	1.7	W
Power Dissipation	T _A =70℃		2.0	1.1	VV
Avalanche Current B		I _{AR}	13		А
Repetitive avalanche energy 0.3mH ^B		E _{AR}	25		mJ
Junction and Storage Temperature Range		T_J , T_{STG}	-55 to 150		$\mathcal C$

Thermal Characteristics							
Parameter	Symbol	Тур	Max	Units			
Maximum Junction-to-Ambient AF	t ≤ 10s	D	31	40	°C/W		
Maximum Junction-to-Ambient A	Steady-State	$R_{ hetaJA}$	59	75	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	16	24	°C/W		

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Parameter Conditions		Тур	Max	Units			
STATIC PARAMETERS									
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	30			V			
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =30V, V _{GS} =0V			0.1	mA			
		T _J =55℃			20				
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±20V			100	nA			
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$ $I_{D}=250\mu A$	1.3	1.64	2	V			
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V	80			Α			
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =10.5A		14.4	17.5	mΩ			
		T _J =125℃		21.5	25.8	11152			
		V_{GS} =4.5V, I_D =8A		22.7	29.0	mΩ			
g _{FS}	Forward Transconductance	$V_{DS}=5V, I_{D}=10.5A$		23		S			
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.4	0.5	V			
Is	Maximum Body-Diode + Schottky Conti			4.8	Α				
DYNAMIC	PARAMETERS								
C _{iss}	Input Capacitance			696	900	pF			
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =15V, f=1MHz		199		pF			
C _{rss}	Reverse Transfer Capacitance			81		pF			
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		1.2	1.8	Ω			
SWITCHI	NG PARAMETERS								
Q _g (10V)	Total Gate Charge			12.4	16	nC			
Q _g (4.5V)	Total Gate Charge	V _{GS} =10V, V _{DS} =15V, I _D =10.5A		6.1	8	nC			
Q_{gs}	Gate Source Charge	- VGS=10V, VDS=10V, ID=10.3A		2.04		nC			
Q_{gd}	Gate Drain Charge			2.7		nC			
t _{D(on)}	Turn-On DelayTime			2.6		ns			
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =15V, R_{L} =1.43 Ω ,		6.8		ns			
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		17		ns			
t _f	Turn-Off Fall Time		_	3.6		ns			
t _{rr}	Body Diode Reverse Recovery Time	I _F =10.5A, dI/dt=300A/μs		20.2	26	ns			
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =10.5A, dI/dt=300A/μs		7.9		nC			

A: The value of R _{BJA} is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE

T $_{\rm A}\!\!=\!\!25^{\circ}\!\!{\rm C}.$ The value in any given application depends on the user's specific board design.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using <300 μs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \le 10s$ junction to ambient thermal resistance rating. Rev2: Nov. 2010

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

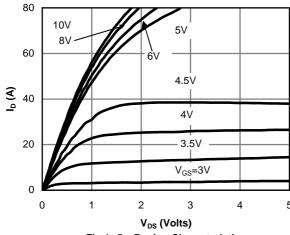


Fig 1: On-Region Characteristics

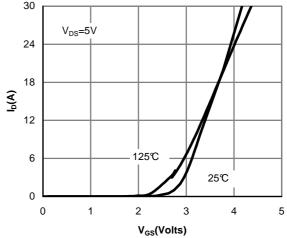


Figure 2: Transfer Characteristics

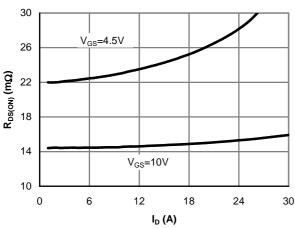


Figure 3: On-Resistance vs. Drain Current and Gate Voltage

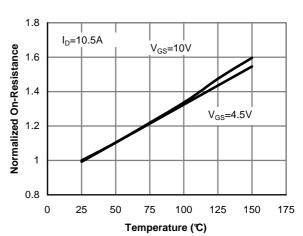


Figure 4: On-Resistance vs. Junction Temperature

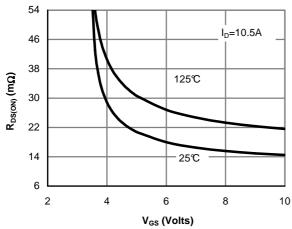


Figure 5: On-Resistance vs. Gate-Source Voltage

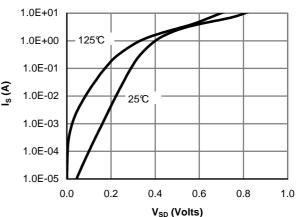


Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

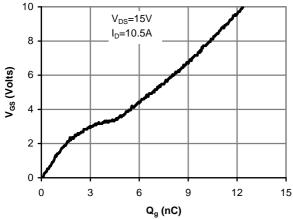


Figure 7: Gate-Charge Characteristics

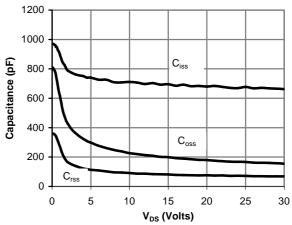


Figure 8: Capacitance Characteristics

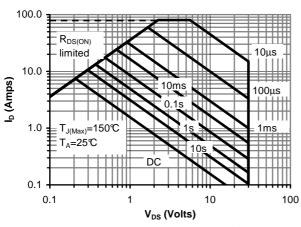


Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

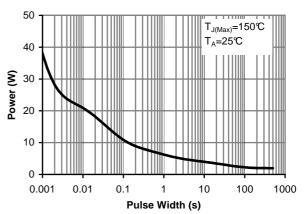


Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

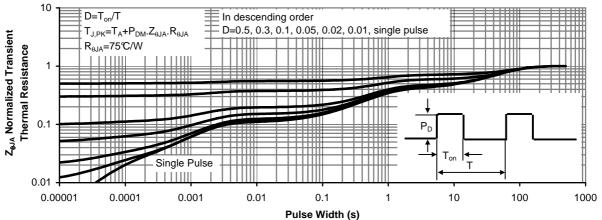


Figure 11: Normalized Maximum Transient Thermal Impedance